direct product, p-group, elementary abelian, monomial, rational
Aliases: C23, SmallGroup(8,5)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C23 |
C1 — C23 |
C1 — C23 |
Generators and relations for C23
G = < a,b,c | a2=b2=c2=1, ab=ba, ac=ca, bc=cb >
Character table of C23
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
(1 2)(3 4)(5 6)(7 8)
(1 3)(2 4)(5 7)(6 8)
(1 7)(2 8)(3 5)(4 6)
G:=sub<Sym(8)| (1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8), (1,7)(2,8)(3,5)(4,6)>;
G:=Group( (1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8), (1,7)(2,8)(3,5)(4,6) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8)], [(1,3),(2,4),(5,7),(6,8)], [(1,7),(2,8),(3,5),(4,6)]])
G:=TransitiveGroup(8,3);
C23 is a maximal subgroup of
C22⋊C4 F8
C23 is a maximal quotient of C4○D4
action | f(x) | Disc(f) |
---|---|---|
8T3 | x8-x4+1 | 216·34 |
Matrix representation of C23 ►in GL3(ℤ) generated by
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | -1 |
1 | 0 | 0 |
0 | -1 | 0 |
0 | 0 | -1 |
-1 | 0 | 0 |
0 | -1 | 0 |
0 | 0 | 1 |
G:=sub<GL(3,Integers())| [1,0,0,0,1,0,0,0,-1],[1,0,0,0,-1,0,0,0,-1],[-1,0,0,0,-1,0,0,0,1] >;
C23 in GAP, Magma, Sage, TeX
C_2^3
% in TeX
G:=Group("C2^3");
// GroupNames label
G:=SmallGroup(8,5);
// by ID
G=gap.SmallGroup(8,5);
# by ID
G:=PCGroup([3,-2,2,2]);
// Polycyclic
G:=Group<a,b,c|a^2=b^2=c^2=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations
Export
Subgroup lattice of C23 in TeX
Character table of C23 in TeX